Análisis de la longitud telomérica como biomarcador del riesgo y progresión de enfermedades metabólicas
Revista Bioquímica y Patología Clínica (ByPC) 
pdf

Palabras clave

telómeros
enfermedades metabólicas
diabetes
obesidad

Cómo citar

Análisis de la longitud telomérica como biomarcador del riesgo y progresión de enfermedades metabólicas. (2025). Revista Bioquímica Y Patología Clínica, 90(1), 35-42. https://doi.org/10.62073/73w1gh43

Resumen

Objetivos: Analizar la longitud telomérica (LT) como biomarcador del riesgo y la progresión de enfermedades metabólicas. Evaluar la LT de acuerdo con el número de alteraciones metabólicas y factores de riesgo ambientales. Materiales y Métodos: Se realizó un estudio transversal en individuos categorizados de la siguiente manera : con obesidad metabólicamente sanos (OMS); obesidad y síndrome metabólico (OSM) y un grupo control normopeso (NP). Se hicieron determinaciones bioquímico-clínicas y antropométricas y se infomaron presencia de factores de riesgo del estilo de vida y enfermedades preexistentes. La LT absoluta se determinó en ADN de sangre periférica por PCR cuantitativa. El análisis estadístico se realizó con SPSS versión 20.0 con p<0.05. Resultados: La menor LT se asoció a la presencia de anormalidades del SM y al aumento progresivo del número de componentes(p<0.001). Los OMS presentaron una LT significativamente menor que los NP (p=0.034) y mayor que los OSM (p=0.004). La menor LT se asoció con la mayor cantidad de años de ser fumador (p=0.003). Por último, el tercil más bajo de LT se asoció con mayor riesgo de presentar circunferencia de cintura aumentada (OR=2.13; p<0.001), triglicéridos altos (OR=1.68; p=0.034), dislipidemia (OR=1.86; p=0.039), obesidad (OR=2.41; p<0.001) y SM (OR=2.12; p<0.001). Conclusión: la LT puede resultar un biomarcador útil de riesgo y progresión de enfermedades metabólicas, como la enfermedad cardiovascular y la DT2.

pdf

Referencias

1. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47(6):1093-1100. https://doi.org/10.1016/j.jacc.2005.1

2. Sundström J, Vallhagen E, Risérus U, Byberg L, Zethelius B, Berne C, et al. Risk associated with the metabolic syndrome versus the sum of its individual components. Diabetes Care. 2006;29(7):1673-1674. https://doi.org/10.2337/dc06-0664

3. Inchiostro S, Fadini GP, de Kreutzenberg SV, Citroni N, Avogaro A. Is the metabolic syndrome a cardiovascular risk factor beyond its specific components? J Am Coll Cardiol. 2007;49(25):2465-2466. https://doi.org/10.1016/j.jacc.2007.04.019

4. Elder SJ, Lichtenstein AH, Pittas AG, Roberts SB, Fuss PJ, Greenberg AS, et al. Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. J Lipid Res. 2009;50(9):1917-1926. https://doi.org/10.1194/jlr.P900033-JLR200

5. Dobson R, Burgess MI, Sprung VS, Irwin A, Hamer M, Jones J, et al. Metabolically healthy and unhealthy obesity: differential effects on myocardial function according to metabolic syndrome, rather than obesity. Int J Obes (Lond). 2016;40(1):153-161. https://doi.org/10.1038/ijo.2015.151

6. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Me-tabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89(6):2569-2575. https://doi.org/10.1210/jc.2004-0165

7. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Prevalence of uncomplicated obesity in an Italian obese population. Obes Res. 2005;13(7):1116-1122. https://doi.org/10.1038/oby.2005.130

8. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel). 2021;10(4):253. https://doi.org/10.3390/biology10040253

9. Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008;44(3):235-246. https://doi.org/10.1016/j.freeradbiomed. 2007.10.001

10. Révész D, Milaneschi Y, Verhoeven JE, Penninx BW. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab. 2014;99(12):4607-4615. https://doi.org/10.1210/jc.2014-1851

11. Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative

stress. Ann N Y Acad Sci. 2004;1019:278-284. https://doi.org/10.1196/annals.1297.047

12. Topiwala A, Taschler B, Ebmeier KP, Smith S, Zhou H, Levey DF, Codd V, Samani NJ, Gelernter J, et al. Alcohol consumption and telomere length: Mendelian randomization clarifies alcohol’s effects. Mol Psychiatry. 2022;27(10):4001–8. https://doi.org/10.1038/s41380-022-01690-9

13. Barragán R, Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, St-Onge MP, Portolés O, Corella D. Effect of physical activity, smoking, and sleep on telomere length: a systematic review of observational and intervention studies. J Clin Med. 2021;11(1):76. https://doi.org/10.3390/jcm11010076

14. Yubero-Serrano E, Delgado-Lista J, Peña-Orihuela P, et al. Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp Mol Med. 2013;45:e28. https://doi.org/10.1038/emm.2013.53

15. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults

(Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-3421.

16. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Circulation. 2009;120(16):1640-1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

17. WHO Consultation on Obesity (1999: Geneva, Switzerland) & World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation. World Health Organization. 2000. Disponible en: https://apps.who.int/iris/handle/10665/42330

18. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obesity Res. 1998;6 Suppl 2:51S-209S.

19. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

20. O’Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13:3. https://doi.org/10.1186/1480-9222-13-3

21. Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis. 2011;5(2):119-131. https://doi.org/10.1177/1753944711403189

22. Márquez-Sandoval F, Macedo-Ojeda G, Viramontes-Hörner D, Fernández Ballart JD, Salas Salvadó J, Vizmanos B. The prevalence of metabolic syndrome in Latin America: a systematic review. Public Health Nutr. 2011;14(10):1702-1713. https://doi.org/10.1017/S1368980010003320

23. Cuevas A, Alvarez V, Carrasco F. Epidemic of metabolic syndrome in Latin America. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):134-138. https://doi.org/10.1097/MED.0b013e3283449167

24. Corna R, Fox A, Ranalli C, Ranalli M, Sandrigo S, Belbuzi C, et al. Prevalence of diabetes, obesity and other cardiovascular risk factors. Venado Tuerto Study 3 (VT3). Rev ALAD. 2021;11:101-109. https://doi.org/10.24875/ALAD.21000020

25. Montpetit AJ, Alhareeri AA, Montpetit M, Starkweather AR, Elmore LW, Filler K, et al. Telomere length: a review of métodos for measurement. Nurs Res. 2014;63(4):289-299. https://doi.org/10.1097/NNR.0000000000000037

26. Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol. 2006;35(6):1424-1429. https://doi.org/10.1093/ije/dyl169

27. Richter T, Proctor C. The role of intracellular peroxide levels on the development and maintenance of telomere-dependent senescence. Exp Gerontol. 2007;42(11):1043-1052. https://doi.org/10.1016/j.exger.2007.08.004

28. Astuti Y, Wardhana A, Watkins J, Wulaningsih W, PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480-489. https://doi.org/10.1016/j.envres.2017.06.038

29. Yubero-Serrano EM, Delgado-Lista J, Peña-Orihuela P, Perez-Martinez P, Fuentes F, Marin C, et al. Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp Mol Med. 2013;45(6):e28. https://doi.org/10.1038/emm.2013.53

30. Lejawa M, Osadnik K, Osadnik T, Pawlas N. Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants (Basel). 2021;10(1):93. https://doi.org/10.3390/antiox10010093