Resumen
Los tipos de HPV de alto riesgo (VPH-AR) más comúnmente aceptados en todo el mundo son el 16 y el 18, implicados en el 70% de las lesiones cervicales. La implementación del tamizaje desde los años 70 ha reducido la prevalencia de esta patología. Sin embargo, en los países subdesarrollados, aún existen muchos problemas para poner en funcionamiento el tamizaje correcto en toda la población. Objetivos: Describir la distribución de los genotipos de VPH a partir de muestras exo/endocervicales desde 2010 hasta 2020, y analizar la correlación citológica entre las diferentes patologías ginecológicas. Materiales y métodos: Se analizaron 316 frotis. La citología se realizó según Bethesda 2010. Se llevó a cabo la genotipificación del VPH, y se obtuvieron los siguientes resultados: alto riesgo (AR): 117; bajo riesgo (BR): 76; detectables: 47; indetectable: 44; posible alto riesgo: 26; desconocido: 6. Respecto de la distribución, se detectaron: VPH 16 (34), 6(28), 11(21), 58(20), 53(17), 33(12), 66(11), 31(11), 54(7), 61-62-81 (6). 160 de 316 tenían citodiagnóstico: 31 tenían VPH-BR y 34, VPH-AR sin lesión visible; 23 inflamatorias tenían VPH-BR (12) y VPH-AR (11); 46 LSIL (lesión escamosa intraepitelial de bajo grado), con 21 BR, y 25 AR; 11 HSIL (lesión escamosa de alto grado) con 7 HR; 14 ASCUS (significado indeterminado) con 7 HR; Conclusión: Se encontró mayor prevalencia de VPH-AR, con predominio de 16, 58, 33, 66, 31, 45 y 56. El VPH 18 no presentó una frecuencia elevada. Las muestras citológicas sin lesiones visibles, inflamatorias, con LSIL y VPH-AR son las que merecen seguimiento, y la citología es importante aquí debido a las limitaciones de la sola información del genotipo.
Referencias
1. Cáncer cérvicouterino. Organización Mundial de la Salud. 2022; Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/cervical-cancer
2. Guerra F, Rocher A, Díaz L, Palaoro L. Wnt/Beta-Catenin and EGFR/PI3K/ pAKT/mTOR Signaling Pathways and Their Relation with Cervical Cancer. J Gynecol Oncol. 2020; 3(3): 1035, https://www.remedypublications.com/open-access/wntbeta-catenin-and-egfrpi3kpaktmtorsignaling-pathways-5921.pdf
3. Guerra F, Rocher A, Angeleri A, Díaz LB, Mendeluk G, Quintana S, et al. Moléculas de adhesión y proteínas oncogénicas de virus de papiloma humano en la progresión de cáncer de cuello uterino. ByPC [Internet]. 2021 Apr. 9 [cited 2023 Oct. 17]; 82(2):30-5. Disponible en: https://revistabypc.org.ar/index.php/bypc/article/view/86
4. Gupta SM, Warke H, Chaudhari H, Mavani P, Katke RD, Kerkar SC, et al. Human Papillomavirus E6/E7 oncogene transcripts as biomarkers for the early detection of cervical cancer. J Med Virol. 2022; 94(7):3368-3375, https://doi.org/10.1002/jmv.27700
5. Bruno MT, Cassaro N, Mazza G, Guaita A, Boemi S. Spontaneous regression of cervical intraepithelial neoplasia 3 in women with a biopsy-cone interval of greater than 11 weeks. BMC Cancer. 2022;22(1):1072, https://doi.org/10.1186/s12885-022-10179-1
6. Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, et al. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit Rev Oncol Hematol. 2022;174:103675, https://doi.org/10.1016/j.critrevonc.2022.103675
7. Control integral del cáncer de cuello uterino: Guía de prácticas esenciales.Organización Mundial de la Salud, Departamento de Salud Reproductiva e Investigaciones Conexas y Departamento de Enfermedades Crónicas y Promoción de la Salud. 2014; Disponible en: https://www.who.int/publications/i/item/9789241548953
8. Karaaslan S, Dilcher TL, Abdelsayed M, Goyal A. Significant outcomes associated with high-risk human papillomavirus negative Papanicolaou tests. J Am Soc Cytopathol. 2023;12(3):189-196, https://doi.org/10.1016/j.jasc.2023.01.003
9. Ojha PS, Maste MM, Tubachi S. Human papillomavirus and cervical cancer: an insight highlighting pathogenesis and targeting strategies. Virusdisease. 2022;33,132-154, https://doi.org/10.1007/s13337-022-00768-w
10. Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, et al. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health. 2021;20(8):552028, https://doi.org/10.3389/fpubh.2020.552028
11. Sichero L, Picconi MA, Villa LL. The contribution of Latin American research to HPV epidemiology and natural history knowledge. Braz J Med Biol Res. 2020;53(2): e9560, https://doi.org/10.1590/1414-431X20199560
12. Angeleri A, Díaz G, Guerra F, Palaoro, L, Rocher, A. Calidad de la toma exo-endocervical en la prevención del cáncer de cuello uterino. Medicina. 2017; 77(6): 512-514, https://www.medicinabuenosaires.com/indices-de-2010-a-2017/volumen-77-ano-2017-no-6-indice/calidadde-la-toma-exo-endocervical-en-la-prevencion-del-cancer-de-cuellouterino/
13. Guerra F, Rocher AE, Villacorta Hidalgo J, Díaz L, Vighi S, Cardinal, L, et al. Argentophilic nucleolus organizer region as a proliferation marker in cervical intraepithelial neoplasia grade 1 of the uterine cervix. J obstet gynaec. 2014;40(6): 1717-1724, https://doi.org/10.1111/jog.12380
14. Abba M, Gomez C, Golijow C. Distribución de los genotipos del virus del papiloma humano en infecciones cervicales en mujeres de La Plata, Argentina. Rev Argent Microbiol. 2003;35:74-79.
15. Jordá GB, Ramos JM, Mosmann JP, López ML, Wegert A, Cuffini, C. Prevalencia del virus papiloma humano y factores de riesgo asociados en mujeres afiliadas al seguro de salud estatal en Posadas, Misiones (Argentina). 2020; Rev Chil Infectol, 37; 2:111-116, https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182020000200111
16. Sijvarger CC, González JV, Prieto A, Messmer AG, Mallimaci MC, Alonio, VL, et al. Epidemiología de la infección cervical por virus Papiloma humano en Ushuaia: Argentina. Rev argent microbiol. 2006;38(1):19-24, https://www.researchgate.net/publication/237767332Epidemiologia_de_la_infeccion_cervical_por_virus_Papiloma_humano_en_Ushuaia_Argentina
17. Lüthy I, Bruzzon A. Prevención del cáncer de cuello uterino. Medicina. 2018;78(6):458-460, https://www.medicinabuenosaires.com/revistas/vol78-18/n6/458-460-Med6905-Editorial-Luthy.pdf
18. Nayar R, Wilbur DC. The Bethesda System for Reporting Cervical Cytology: A Historical Perspective. Acta Cytol. 2017; 61(4-5):359-372, https://doi.org/10.1159/000477556
19. Guerra F, Rocher A, Angeleri A, Diaz L, Mendeluk G, Quintana S, et al. Moléculas de adhesión y proteínas oncogénicas de virus de papiloma humano en la progresión de cáncer de cuello uterino. ByPC. 2018; 82(2):30-35, https://www.revistabypc.org.ar/index.php/bypc/article/view/86
20. Remmerbach TW, Brinckmann UG, Hemprich A, Chekol M, Kühndel K, Liebert UG. PCR detection of human papillomavirus of the mucosa: comparison between MY09/11 and GP5+/6+ primer sets. J Clin Virol. 2004;30(4):302-8, https://doi.org/10.1016/j.jcv.2003.12.011
21. Qin D, Bai A, Xue P, Seery S, Wang J, Mendez MJG, et al. Colposcopic
accuracy in diagnosing squamous intraepithelial lesions: a systematic review and meta-analysis of the International Federation of Cervical Pathology and Colposcopy 2011 terminology. BMC Cancer. 2023;23(1):187, https://doi.org/10.1186/s12885-023-10648-1
22. de Cremoux P, de la Rochefordière A, Savignoni A, Kirova Y, Alran S, Fourchotte
V, et al. Different outcome of invasive cervical cancer associated with high-risk versus intermediate-risk HPV genotype. Int J Cancer. 2009;124:778-782, https://doi.org/10.1002/ijc.24075
23. Workowski KA, Bachmann LH, Chan PA, Johnston CM, Muzny CA, Park I, et al. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm Rep. 2021;70(4):1-187, https://doi.org/10.1002/ijc.24075
24. Nakamura M, Obata T, Daikoku T, Fujiwara H. The Association and Significance of p53 in Gynecologic Cancers: The Potential of Targeted Therapy. Int J Mol Sci. 2019;20(21):5482, https://doi.org/10.3390/ijms20215482
25. Chaparro RM, Rodríguez B, Maza Y, Moyano D, Hernández-Vásquez A. Factors associated with hindering the acceptance of HPV vaccination among caregivers - A cross-sectional study in Argentina. PLoS One. 2020;15(3):e0229793 https://doi.org/10.1371/journal.pone.0229793
26. Ruiz-Sternberg ÁM, Moreira ED Jr, Restrepo JA, Lazcano-Ponce E, Cabello R, Silva A, et al. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women. Papillomavirus Res. 2018;5:63-74, https://doi.org/10.1016/j.pvr.2017.12.004
27. Trama JP, Trikannad C, Yang JJ, Adelson ME, Mordechai E. High-Risk HPV Genotype Distribution According to Cervical Cytology and Age. Open Forum Infect Dis. 2022;9(11):595, https://doi.org/10.1093/ofid/ofac595
28. Halec G, Alemany L, Lloveras B, Schmitt M, Alejo M, Bosch FX, et al; Retrospective International Survey and HPV Time Trends Study Group; Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol. 2014;234(4):441-51, https://doi.org/10.1002/path.4405